Embauché il y a 2 ans pour digitaliser les process, Alexandre Aubry raconte tous les changements que cela a induit : transformation de l'organisation, de l'infrastructure matérielle et réseau, ouverture et décommissionnement progressif de l'ERP Cobol...
Nous avons assisté à la conférence client de l'entreprise Orange à Agile en Seine. Cet article vous propose de découvrir comment l'IA Gen devient déjà un atout incontournable chez certains clients.
Un bon mix d'indicateurs - des KPI classiques ainsi que des KPI personnalisés - devrait vous aider, à condition de respecter un principe essentiel : faites simple !
DataOps est une pratique collaborative de gestion des données qui vise à améliorer la communication, l’intégration et l’automatisation des flux de données entre les gestionnaires et les consommateurs de données.
Fini les tâtonnements, place à l’approche industrialisée de la donnée : le DataOps. Si on tire bien les leçons des années Big Data, qui ont coïncidé avec les débuts de la transformation numérique de la société, c’est bien de cela que les entreprises ont besoin : une infrastructure solide mais agile, qui offre aux métiers la possibilité de s’appuyer sur la donnée pour prendre rapidement des décisions pertinentes, voire automatiser un certain nombre de processus.
Gartner définit le DataOps ainsi :
« DataOps est une pratique collaborative de gestion des données qui vise à améliorer la communication, l’intégration et l’automatisation des flux de données entre les gestionnaires et les consommateurs de données au sein d’une organisation. L’objectif de DataOps est de fournir de la valeur plus rapidement en créant une livraison prévisible et une gestion du changement des données, des modèles de données et des artefacts connexes. DataOps utilise la technologie pour automatiser la conception, le déploiement et la gestion de la livraison des données avec des niveaux de gouvernance appropriés, et il utilise les métadonnées pour améliorer la convivialité et la valeur des données dans un environnement dynamique. »
Il s’agit donc de la combinaison d’un environnement technique (les infrastructures de type "data platform") et d’une gouvernance modernisée, prenant en compte la stratégie, les rôles, les processus, ou encore les métadonnées.
La pratique s'inspire fortement du DevOps, explique dans la vidéo ci-dessous Florent Legras, Data engineering manager de SFEIR Paris. Le monde du développement logiciel a su s'industrialiser ; c'est au tour du monde de la donnée.
Cet article est extrait du Livre blanc "DataOps" 🗝
Un bon mix d'indicateurs - des KPI classiques ainsi que des KPI personnalisés - devrait vous aider, à condition de respecter un principe essentiel : faites simple !
Entre une organisation qui s'est constituée de manière... organique, et le désir d'être data-centric ou au moins de valoriser les données, il y a un fossé. Commencer par repenser ses chaînes de valeur data s'avère un excellent point de départ.
Agile en Seine 2024 s'annonce comme une opportunité unique pour nos dirigeants de s'immerger dans les dernières avancées en matière d'agilité, de data et d'IA. Nous participerons à cet événement pour recueillir et partager des insights stratégiques.
Matrice Impact vs Effort, Méthode MoSCoW, Scorings RICE & ICE vous aideront à évaluer et prioriser vos projets de data science, pour maximiser les chances d'un résultat satisfaisant - et aligné avec les objectifs stratégiques de l'entreprise.