Les agents marquent le début d'une nouvelle ère. Les entreprises qui sauront les intégrer avec méthode, éthique et agilité auront un temps d'avance. Le futur ne sera pas automatisé ; il sera orchestré.
Avec l'adoption toujours plus grande de l'IA au sein des entreprises, comment imaginer le passage à l'échelle qui permettra de transformer les organisations et que chacun s'empare de l'IA pour en faire un outil de travail au quotidien ?
L'intégration de l'IA générative dans les processus de développement transforme radicalement l'expérience développeur, ainsi que les *soft* et *hard* skills attendues.
DataOps est une pratique collaborative de gestion des données qui vise à améliorer la communication, l’intégration et l’automatisation des flux de données entre les gestionnaires et les consommateurs de données.
Fini les tâtonnements, place à l’approche industrialisée de la donnée : le DataOps. Si on tire bien les leçons des années Big Data, qui ont coïncidé avec les débuts de la transformation numérique de la société, c’est bien de cela que les entreprises ont besoin : une infrastructure solide mais agile, qui offre aux métiers la possibilité de s’appuyer sur la donnée pour prendre rapidement des décisions pertinentes, voire automatiser un certain nombre de processus.
Gartner définit le DataOps ainsi :
« DataOps est une pratique collaborative de gestion des données qui vise à améliorer la communication, l’intégration et l’automatisation des flux de données entre les gestionnaires et les consommateurs de données au sein d’une organisation. L’objectif de DataOps est de fournir de la valeur plus rapidement en créant une livraison prévisible et une gestion du changement des données, des modèles de données et des artefacts connexes. DataOps utilise la technologie pour automatiser la conception, le déploiement et la gestion de la livraison des données avec des niveaux de gouvernance appropriés, et il utilise les métadonnées pour améliorer la convivialité et la valeur des données dans un environnement dynamique. »
Il s’agit donc de la combinaison d’un environnement technique (les infrastructures de type "data platform") et d’une gouvernance modernisée, prenant en compte la stratégie, les rôles, les processus, ou encore les métadonnées.
La pratique s'inspire fortement du DevOps, explique dans la vidéo ci-dessous Florent Legras, Data engineering manager de SFEIR Paris. Le monde du développement logiciel a su s'industrialiser ; c'est au tour du monde de la donnée.
La définition du DataOps en moins de 3 minutes
Cet article est extrait du Livre blanc "DataOps" 🗝
Ce ne sera toujours pas pour 2025 : l'outil "miracle" pour la gouvernance des données n'existe pas ; il s'agit plutôt d'une démarche outillée, dont il est important de s'approprier les étapes.
Replay du webinaire du 6 février dernier, à l'occasion de la sortie de notre Livre blanc Tendances Tech 2025, réunissant des experts de SFEIR et WEnvision.
Le texte régulant l'IA dans l'Union européenne est entré en vigueur. Généralement perçu comme un frein, il peut aussi être vu comme une opportunité de faire les choses différemment.